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Modelling of Landuse-Landcover (LULC) change using spatiotemporal data is important to know the land
use change and environmental monitoring, especially in agricultural fields which allows us to comprehend
the potential changes in crop area and for considerate management of land in future. Efforts have been made
to evaluate LULC changes from 2005 to 2020 and to predict future land use changes in 2030, 2050 and 2080
using an integrated Cellular Automata-Markov Chain (CA-MC) model in the Sind River Basin in Central
India. To evaluate the spatiotemporal change and future simulation, LULC Landsat images of 2005, 2015 and
2020 collected from NRSC Bhuvan were used. A module called Land Change Modeller in TerrSet was
selected to study the land use dynamics. The over-all accuracy and the Kappa coefficient were found as
90.5% and 0.83 respectively, when the simulated and actual LULC map for the year 2020 were compared. The
study finds that the major areas under Agriculture, forest land and waterbody are likely to convert into urban
area in future which could lead to decrease in evapotranspiration and increase in runoff. Measures should
be implemented for proper use of cultivable land and forest conversion has to be managed well. The
predicted maps can be utilized as input thematic maps in various climatic and environmental models to
achieve the goals of sustainable development in the region.
Key words : CA-Markov Chain, LULC, Predictive modelling, Kappa coefficient.
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ABSTRACT

Introduction
Land use-Land Cover (LULC) are two key features

that characterize the Earth’s surface. Land use refers to
how people use the land area which considers the activities
and arrangements. Land cover is a physical feature on
the facet of the Earth such as soil, water, vegetation, etc.
The anthropogenic activities on land have significantly
affected the terrestrial ecosystem and environmental
change both locally and globally (Ramankutty et al.,
2006). In the recent years, the mechanism of LULC has
greatly changed (Beroho et al., 2023). The primary cause
of this is the accelerated human-mediated processes like
deforestation, urbanization and agricultural development
(Sun et al., 2021). Because of the land interaction with
human and environment, its changes are integral part of

the global plan. It is evident that the insufficient knowledge
regarding the usage of environmental resources causes
the magnitude and dynamics of land use change to become
a serious problem in a country like India with a growing
population.

LULC changes are sustained globally due to a
number of variables, including the alarmingly growing
population and the perceived necessity for natural
resources like residential and agricultural land (Hyandye
and Martz, 2017; Halmy et al., 2015; Khan et al., n.d.).
Due to its dynamic nature, the LULC necessitates ongoing
evaluation, research, planning, and monitoring using socio-
economic and geospatial data to produce comprehensive
and precise results (Cunha et al., 2021 and Yifru et al.,
2021). The land cover data can be determined by
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analyzing aerial and satellite imagery. In recent years,
less efforts are entailed in identifying LULC classes due
to the easy availability of high-resolution remote sensing
satellite images and classified data facilitated by authorized
organizations (Li et al., 2019; Venter et al., 2022;
Tessema et al., 2020). Some of them are Environmental
System Research Institute’s LULC classified data and
MODIS land cover classes from NASA (global), National
Remote Sensing Center (NRSC), Bhuvan which
maintains the land cover images and statistics of India.

A realistic prediction of land use demand and its
simulation in potential future scenarios are essential for
maximizing the effectiveness of land use policy and
planning (Nourqolipour et al., 2015). Therefore, land
change models should be used to simulate a wide range
of potential earth system evolution scenarios to aid in the
development of strategies and land use evaluation studies
(Liu et al. ,  2017). One of the notable human
advancements since the pre-historic era is the use and
application of geospatial technologies such as Remote
Sensing (RS), Geographical Information System (GIS)
and Global Positioning System (GPS) (Hussain et al.,
2022; Revuelta-Acosta et al., 2022). RS is an effective
tool for regularly tracking and quantifying LULC changes
in the environment and for analyzing geomorphological
data to determine how landforms have changed over time
(Alshari and Gawali, 2021; Seyam et al., 2023). Use of
machine learning image classifiers in RS has increased
because of availability of free satellite data. For mapping
and modeling land cover, both the supervised and
unsupervised techniques of machine learning are
becoming steadily more common (Wang et al., 2022).
Over the past 20 years, a number of models pertaining to
LULC have been developed to study future land use
scenarios at various scales and various regions, plus to
assess and simulate the impact of changes in land usage
on the Earth system (Aburas et al., 2017; Gollnow et al.,
2018; Firozjaei et al., 2019).

Spatial models are widely used, where the primary
feature that sets spatial models apart from non-spatial
models (based on econometric applications and economic
theories of development (Aburas et al., 2019) is their
capacity to clearly illustrate changes in land use on a
map (Yang et al., 2020). The cellular automata may be
characterized as a physical system model where time
and space are considered discrete and interactions are
local (Tsompanas et al., 2021). The traditional CA  are
insufficient to create a realistic simulation because the
models structure solely considers the spatial data (Jokar
Arsanjani et al., 2013). In fact, the CA is a limited model
for implementing the factors that drive land use change,

which makes it challenging to manage (Mohammady et
al., 2014). Considering this, the combined modelling
methodologies are to be suited well for simulating LULC
processes (Karimi et al., 2018). So, the integration of a
traditional CA model with a spatio-temporal model like
Markov Chain (MC) is done for better results and to
overcome the above constraints (Gharaibeh et al., 2020).
The MC approach tracks the temporal evolution on the
basis of transition matrices.

The decrease in areas of cultivated land and
waterbodies with increase in urban land is now a critical
problem and shortcoming in recent times. In this study,
the loss and gain of each land class and future amount of
change prediction is understood. The combined CA-MC
model hasn’t been applied in the land-use simulations in
the Sind basin, which makes its use to forecast future
land use conditions. This study was therefore an aim to
assess the spatial and temporal changes in 2005-2015-
2020; to simulate and validate for 2020 LULC; as well
as to predict the LULC for 2030, 2050 and 2080 based
on CA-MC model.

Materials and Methods
Study area

The Sind River Basin lies between 77°10 19 to
79°07 32 E longitude and 24°01 04 to 26°47 01" N
latitude. The Sind River is one of the longest rivers of the
Central India which joins the Yamuna River on its right
bank of length 470 km (Fig. 1). The geographical area of
the river basin is 28,975 km2. The precipitation variability
ranges between 800 to 1000 mm experiencing dry tropical
climate (Narsimlu et al., 2018). The majority of the study
area exists in the state of Madhya Pradesh while some
part lies in Utter Pradesh, India. The mean daily minimum
temperature in the study area goes up to 3°C and
maximum up to 48°C (Kumar et al., 2021). The relative
humidity generally exceeds 83%, and the wind velocity
is higher during the pre-monsoon season than the post-
monsoon (Kumar et al., 2021). The study area has
denudational hills, pediment (granite), Deccan plateau,
alluvial plains, intermountain valley, mesa and ridges
(Narsimlu et al., 2018). A major part of the river basin
has low productivity with subsistence agriculture and has
excessive runoff (Narsimlu et al., 2018).
Data Acquisition and maps preparation

The LULC maps of 2005, 2015 and 2020 of scale
1:2,50,000 scale were acquired from the National Remote
Sensing Center (NRSC), Bhuvan. The basin shape file
was extracted from SRTM 90 m DEM which was taken
from the United States Geological Survey (USGS)
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website (https://earthexplorer.usgs.gov/) accessed on 15
April, 2014. The 2005, 2015 and 2020 maps were
integrated into ArcMap 10.2.2 to prepare the maps for
LULC analysis.

The original LULC map of Sind basin has 12 classes,
namely built-up, kharif crop, rabi crop, zaid crop, double/
triple crop, current fallow, plantation, deciduous forest,
scrub forest, wasteland, waterbodies max and
waterbodies min. They were reclassified in TerrSet

software using the RECLASS module which was
developed by Clark Labs. Five classes were made by
considering kharif crop, rabi crop, zaid crop and double/
triple crop as one entity called ‘Agriculture’; current
fallow and wasteland as ‘Barren land’; plantation,
deciduous forest and scrub forest as ‘Forest’; min and
max waterbodies as ‘Waterbody’ and the ‘built-up land’.
So, the final LULC categories are Agriculture, Built-up,
Forest, Barren land and Water body for the year’s 2005,
2015 and 2020.
Simulation of LULC using CA-Markov Chain model

The Land Change Modeler (LCM) is embedded in
TerrSet Geospatial Monitoring and Modeling System. It
relies on classified historical satellite imagery to forecast
LULC for a specified year. The LCM computes a relative
number of transitions after estimating the degree of land
cover change that occurred between earlier and later
LULC. Changes in the LULC assessment like losses
and gains for each class are provided by the module (Leta
et al., 2021a). The analysis, prediction and validation of
the simulated LULC change is possible using the LCM
model. Recent patterns, historical land use data and
projected future changes serve as base information for
future scenarios. The LCM is an empirically driven
stepwise process from Change Analysis, Transition
Potential Modelling to Change Prediction. The ‘change
analysis’ section analyzes the past landcover change,
‘transition potential’ section simulates the possibility of
land changes and the ‘change prediction’ section predicts
the future direction of change.

CA-Markov Chain analysis is a stochastic process
which considers the past state to predict the future
changes over time. It is widely used for ecological
processes. This spatial model is normally used in

 
Fig. 1 : Location of the study area.

Fig. 2 : Methodological flowchart applied in this study.
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enhancing the simulation capability of landcover (Aburas
et al., 2016). The CA-MC model is a combination of
Cellular Automata & Markov Chain to predict the land
use pattern and their characteristics over time (Nouri et
al., 2014). The transition probability matrix and transition
area matrix are generated by the model. The probability
of a particular land use class changing relatively to other
classes is represented in probability transition matrix. The
pixel number that is expected to change for every LULC
class over the time frame given is contained in transition
area matrix. Based on transition probability matrix, it
predicts the spatial structure of various LULC categories
(Li et al., 2015; Wang et al., 2012). The Markov matrix
model relies on Bayes equation (Eq (1)) to predict the
changes in the LULC. It compares the initial (T1) and
second (T2) land cover to assess the changes.

S(t, t+1) = Pij × S(t) (1)
where, S(t) is the system status at time t; S(t+1) is the

system status at time of t+1; Pij is the transition probability
matrix
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where, (0  Pij ), P = transition probability; Pij =
probability of converting from current state i to another
state j in next time; PN = state probability of any time.
The probability transition varies from 0 to 1, where 0
denotes low transition and 1 denotes high (Kumar et al.,
2014).

The following are the steps applied using CA-MC
model in TerrSet for simulating LULC (Beroho et al.,
2023) shown in Fig. 2:

1. The year 2005, 2015 and 2020 LULC maps were
selected;

2. To the 2005 and 2015 maps, Markov transition
estimator was employed to get the transition
probability matrix to switch from a particular
LULC class to the another in 2020;

3. The calculated transition probability data and
2015 map acts as the groundwork for simulating
2020 LULC map;

4. The actual 2020 map is considered as a reference,
to decide the accuracy of simulated 2020 map
for model validation;

5. The future LULC of 2030, 2050 and 2080 are
simulated using the calibrated and validated CA-

Markov model.
Validation of simulated map

Validation is a crucial step to evaluate the quality of
simulated LULC map with the reference map. Validation
was done in VALIDATE module using the classified 2020
LULC map as a reference against the simulated 2020
LULC, based on Kappa coefficient. Nevertheless, the
expressiveness of the original Kappa coefficient is limited
since it does not categorize between location and
quantification error (Leta et al., 2021b). This could be
resolved by using Kappa Index of Agreement (KIA)
variations which include the following: Kappa for location
(Klocation), Kappa for standard (Kstandard), Kappa for
stratum-level location (KlocationStrata) and Kappa for no
information (Kno). Klocation computes the spatial accuracy
in overall map, based on certain location of LULC map
(Pontius and Malanson, 2005). Kstandard is the ratio of
inaccurate class category by chance to correct
assignments. KlocationStrata is a measure of spatial accuracy
inside pre-identified strata, which shows how effectively
the grid cells are positioned within the strata and Kno
indicates the overall agreement between the reference
and predicted map (Leta et al., 2021b). The level of Kappa
agreement values and permissible range of map
comparison are shown in Table 1.

Table 1 : Level of kappa agreement values and comparison
values.

S. no. Value range Strength of Agreement
1 < 0 Poor
2 0.01-0.4 Slight
3 0.41-0.6 Moderate
4 0.61-0.8 Substantial
5 0.81-1.0 Almost Perfect

Leta et al. (2021c)

Results and Discussion
Land use/Land cover change analysis

The above method produced LULC classified maps
of 2005, 2015 and 2020 shown in Fig. 3. The change
analysis was performed by evaluation of gains, losses
and net change in different classes using change analysis
tab in LCM. The evaluation of spatio-temporal change
between different classes from 2005 to 2015 was
analyzed in Fig. 3 and Table 2. Agriculture is the primary
dominant land cover class in the overall distribution
followed by forest cover.

The changes between 2005 and 2015 were evaluated
by gain and loss of each LULC class as shown in Fig. 4.
The green band indicates the gain per class in km2 while
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the purple band shows the loss per class from the year
2005 to 2015. The agriculture land has the highest amount
of area gain, while the barren land has the highest amount
of area loss.

The built-up has gained 210.5 km2 and lost 153.8
km2 with a net gain of 56.6% between 2005 and 2015.
Agriculture has the highest amount of gain 2309.2 km2

and lost 1489.6 km2 with net gain of 819.6 km2. Forest
has gained 685.2 km2 and lost 743.9 km2 with a net loss
of 58.7 km2. Barren land has the gain of 1635.7 km2 and
the highest loss of 2496.2 km2 with a net loss of 860.5
km2. Waterbody has the gain of 167.5 km2, while the loss
of 101.8 km2 with a net gain of 65.7 km2.
Transition probability matrix (TPM)

The probability of each LULC class to switch to other
class is assessed by the TPM (Leta et al., 2021). It
calculates the predicted changes in future LULC maps
(Pontius and Malanson, 2005). The TPM generates the
likelihood of each land use class to alter into other class
depending on the suitable transition area. Table 3 shows
the transition probability matrix created by the CA-MC
model between 2005-2015. The model performed a cross-

tabulation of the spatiotemporal LULC change evaluation
between the first and later LULC maps which determines
the amount of change occurred between land cover maps.
In Table 3, the bolded values in TPM which are diagonal,
states the probability of each class that remains
unchanged from the former to the later land cover class.
While, the off-diagonal values reveal the possibility of
change from one class to another. The probability of
switching from Agriculture to built-up and barren land is
0.17% and from Agriculture to waterbody is 0.19%.

The results of the TPM are given as an input data to
the CA-MC model to simulate the map of 2020. This
simulated 2020 map is validated with the actual 2020
LULC map.
Validation of the model

The model has to be validated, to evaluate its
accuracy. Validation is important to assess the standard
of the simulated map with the actual land cover map. A
validation module in the LCM has measured the
agreement of two land cover maps. To validate the
predicted map, a comparison between the simulated and
the actual LULC 2020 map was done. The 2020 actual

Table 2 : Temporal distribution of the land use/land cover in km2.

2005 2015 2020
Class

Area km2 % Area km2 % Area km2 %
Built-up 484.60 1.73 493.43 1.76 509.63 1.82

Agriculture 13127.2 46.94 15334.33 54.82 17555.92 62.77
Forest 9148.21 32.71 6902.41 24.68 4781.32 17.1

Barren land 4787.01 17.12 4773.67 17.06 4637.16 16.58
Waterbody 420.68 1.5 463.78 1.65 484.32 1.73

Total 27967.70 100 27967.62 100 27968.35 100

   

(a) (b) (c) 
Fig. 3 : Classified LULC maps of a) 2005, b) 2015 and c) 2020.
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and simulated LULC maps are shown in Fig. 5. The
confusion matrix is generated by the model which
compares the classes in the actual map and the simulated
map. From the analysis, the simulated map showed
reasonably similar results as the reference or actual 2020
LULC map.

Furthermore, the model’s efficacy and reliability in
producing future LULC maps that are closest to reality
are determined by different Kappa indicators. The
Kstandard, Kno, Klocation and KlocationStrata are 0.9308, 0.9499,
0.9445 and 0.9445, respectively (Fig. 6). The degree of
agreement between two maps increases with the values
of these indices approaching 100%. All the indices are
greater than 80% which justifies that the CA-MC
simulated model was well structured and the accuracy
was satisfactorily accurate for the simulated map of 2020
(Hamad et al., 2018). Based on the observed and
simulated results of the LULC 2020, in the class of
Agriculture and barren land there was a slight difference

of 1.84% and 1.56%, respectively as shown in Fig. 7.
However, this dissimilarity has not affected the validation
as the over-all accuracy of the model was 90.5% and
the over-all Kappa-coefficient was 0.83. The forest land,
built-up and waterbody has not shown much variation.
Prediction of future LULC

Use of CA-Markov to analyze future LULC from
past LULC is important for land use planning and forest
management (Behera et al., 2012; Yirsaw et al., 2017).
The simulated future LULC maps of 2030, 2050 and 2080
of Sind River Basin are shown in Fig. 8 and the areal
distribution and percentage are tabulated in Table 4. From
2005 to 2080, the built-up rose tremendously from 484.6
km2 to 995.4 km2. The reason could be the increase in
population, infrastructure development, industrialization,
urbanization, highway expansion, etc. expected to happen
in the region. Agricultural land significantly increased
from 46.94% in 2005 to 62.7% in 2020, but found in a
decreasing trend from 60.69% in 2030 to 60.06% in 2080.
This was mainly due to expansion in urban land and
deforestation in the future predictions. A similar trend of
decrease in crop land and forests due to expansion in

Table 3 : Transition probability matrix between 2005 to 2015.

Built-up Agriculture Forest Barren land Waterbody

Built-up 0.7487 0.1749 0.0201 0.0534 0.0029

Agriculture 0.0053 0.9491 0.0046 0.0374 0.0036

Forest 0.0021 0.0166 0.9343 0.0431 0.004

Barren land 0.0051 0.1722 0.0361 0.7743 0.0123

Waterbody 0.0037 0.1931 0.0316 0.0708 0.7008

0.00 1000.00 2000.00-1000.00-2000.00

URBAN

AGRICULTURE

FOREST

BARREN

WATER

Gains and losses between 2005 and 2015Gains and losses between 2005 and 2015

Fig. 4 : Gains and losses area (km2) of LULC between 2005-
2015.

  
Fig. 5 : Observed and simulated LULC maps of 2020.

urban area through CA Markov modelling was
reported by Mitsova et al. (2011). Similarly, a
continuous increase was observed in
waterbody from 420.6 km2 in 2005 to 484.3
km2 in 2020, but found decreasing after 2020
in the future years. This decrease in
waterbody might be due to horizontal spread
of built-up occupying dried lakes, ponds and
barren land. Most of the barren land, forest
land and agriculture land are found on a

decreasing trend in future due to expansion of urban area.
Fig. 9 shows the graphical illustration of the area covered
by five LULC classes for the past years (2005, 2015,
2020), simulated 2020 LULC and future predicted years
(2030, 2050 and 2080).

Fig. 6 : Validation of the CA-Markov model.
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Surface and sub-surface water resources, soil fertility,
climate variability, agricultural productivity influences the
LULC changes directly or indirectly. With the increase

in rural and urban population, the stress on agricultural
land and river water for irrigation and domestic purpose
is severe. Therefore, thorough environmental evaluation
and assessment is required to prevent risks in the future
stages. The changes in LULC are closely linked to
resource management, environmental health and
sustainability. Predicting and monitoring the Land use and
Land cover changes is essential for ecosystem health
like loss and fragmentation of habitat can result from
urban development and deforestation. This alarms the
need to protect ecosystem services and biodiversity. WithFig. 7 : Observed and simulated LULC of 2020.

Fig. 8 : Simulated a) 2030, b) 2050 and c) 2080 LULC maps.

Fig. 9 : LULC classes by area.
the change in land cover, the changes in urbanization and
vegetation affects greenhouse gas emissions and local
microclimate. This alters the hydrological cycle by
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affecting the ground water recharge and runoff in the
basin and also degrades soil health, influences soil erosion
and land productivity.

The present study for the prediction of LULC
changes in the future found that the model is reliable and
effective. Even so, employment of socio-economic
variables like climate variability, technological growth,
political economy, etc are suggested for further studies.
Larger regions can be effectively simulated using CA-
MC model (Yang et al., 2019), as this work has done.
However, it is sensitive in simulating smaller areas
(Berling-Wolff and Wu, 2004; Yang et al., 2019).

Conclusion
The intention of the current study was to understand

how the LULC patterns have changed historically and
predictably between 2005 and 2080 in Sind River Basin
in Central part of India with a focus on agriculture and
water. It is feasible to forecast future land use by using
several land change models and accounting for the
socioeconomic and ecological elements that affect land
use change. An integrated approach including GIS and
CA-Markov Chain model was used to comprehend the
spatio-temporal LULC dynamics and future LULC
change prediction. For the purpose of change analysis,
the historical LULC maps of 2005, 2015 and 2020 were
used. Then, the future prediction was performed
proficiently for 2030, 2050 and 2080 by validating 2020
with proper assessment using Kappa index statistics. The
predicted result of 2030 showed sturdy increase of 162.0
km2 in built-up while a decrease of 70.75 km2 in agriculture
land and a little decline of 8 km2 in waterbody between
2020 and 2030. Further, the result for predicted 2050
showed an increase of 422.5 km2 in built-up area where
as a decrease of 163.5 km2 in agriculture land and a
slight decrease of 10.7 km2 in waterbody between 2020
and 2050. Moreover, 2080 showed an increase of 485.8
km2 in built-up area where in a huge decrease of 243.26
km2 in agriculture land and a slight decline of 6.7 km2 in
waterbody between 2020 and 2080. The analysis
between 2020 and 2080 indicated that there is tremendous

decline in agricultural land and water resources, which
alarms the crop land loss. The profitability and productivity
of the agricultural crops are needed to be improved while
conserving the resources. Implementing strategies to
protect and conserve cultivated land and waterbodies is
crucial to achieve a sustainable equilibrium between
natural resources and human activities. The conservation
strategies include adapting efficient agricultural practices,
maintaining waterways, improving public policies and
concentrating on rehabilitation and conservation of
degraded lands. The outcomes from the study can be
utilized by policy makers for sustainable land use planning
and management. They can serve as input layers as well
in various hydrological climate models to assess the impact
of climate change on water resources.
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